ポストモダン解析学: 分割と回転(というか直交行列での変換)が分からなかった話

ポストモダン解析学の176頁の定義13.3で、極限の存在は分かったので、「同様の議論で」の一様収束列のとりかたへ依存しないことやsupp fを含むWのとりかたに依存しないこと(一意性)を調べようと思ったのだが、一部しか分からなかったという話。一意性を示すためには、収束する階段関数の列t_nt'_nをとって、
\left|\int_W t_n(x) dx - \int_{W'} t_m(x) dx\right|\to 0,\, n,m\to\infty
を示せばよい。

2つの関数列について分割の仕方も立方体のとり方も同じ場合

階段関数の積分の定義より、
\left|\int_W t_n(x) dx - \int_{W'} t_m(x) dx\right|=\left|\sum_{i=1}^k (c_i - c'_i)l_i^d\right|であり、c_ic'_iとが近いことは、階段関数の一様収束から言えて、成り立つ。

2つの関数列について立方体のとり方は同じだが、分割の個数が一致しないとき

2つの階段関数がn等分とm等分のとき、nm等分で分割して考えれば両方が一致して上に帰着される。

2つの関数列について立方体のとり方が異なるとき

2つの立方体が平行なら立方体を広げてやればなんとかなると思っていたのだが、広げると分割の仕方が変ってしまって先の式が使えなくなってしまう。ましてや、立方体に直交行列をかましたり平行移動したりしたらお手上げ。

なんでできそうな気がしていたのか

2変数で考えたとき、図的にあまりに自明だったからだと思う。しかし、分割の方法が立方体に限るという厳しい条件のせいか、どうにもならなかった。杉浦解析入門では分割は一般に長方形でできるので、直交行列で回転みたいなことをしなければ対応できた。回転ができるようになるのは結構後のほうだったし、Jurgen Joestさんがどういう意図だったのか本気で気になる。

ほか

考えて自己解決した他の分についてはサイトに置いてあるのでよかったらどうぞ
http://ashiato45.github.io/postmodern_analysis.html